

GCE

Chemistry A

Unit F322: Chains, Energy and Resources

Advanced Subsidiary GCE

Mark Scheme for June 2015

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2015

1. Annotations

Annotation	Meaning
BOD	Benefit of doubt given
CON	Contradiction
×	Incorrect response
ECF	Error carried forward
I	Ignore
NAQ	Not answered question
NBOD	Benefit of doubt not given
POT	Power of 10 error
~	Omission mark
RE	Rounding error
SF	Error in number of significant figures
~	Correct response

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Meaning	
Answers which are not worthy of credit	
Statements which are irrelevant	
Answers that can be accepted	
Words which are not essential to gain credit	
Underlined words must be present in answer to score a mark	
Error carried forward	
Alternative wording	
Or reverse argument	
	Answers which are not worthy of credit Statements which are irrelevant Answers that can be accepted Words which are not essential to gain credit Underlined words must be present in answer to score a mark Error carried forward Alternative wording

12 Subject-specific Marking Instructions

The following questions should be annotated with ticks and crosses to show how marks have been awarded in the body of the text:

3(c)(i), 3(d), 4(c)(ii) 5(d)(i), 5(e)(i), 5(f)(ii), 6(a)(i), 6(b)(ii), 6(c) and 7(b)

All questions where an ECF has been applied.

Checking additional pages

All the Additional Pages in the examination script must be checked to see if any candidates include any answers.

- When you open question **1(a)** you will see a view of page 22 one of the Additional Pages.
- If the page is blank then, using the marking mode, annotate the page with an omission mark, ^, or the BP annotation
- Scroll down to page 24 and annotate with a ^ if the page is blank.
- If pages 22, 23 or 24 are not blank then use the paper clip icon to link the pages to the correct questions.
- You may need to contact your Team Leader if you do not know how to do this.

Generic comments

ORGANIC STRUCTURES

For a 'structure' or 'structural formula',

• ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)

For an alkyl group shown within a structure,

- **ALLOW** bond drawn to C or H, e.g. **ALLOW** CH₃-,CH₂-, C₃H₇-, etc
- ALLOW vertical 'bond' to any part of an alkyl group

For an OH group shown within a structure,

- DO NOT ALLOW formula with horizontal —HO OR OH -
- ALLOW vertical 'bond' to any part of the OH group

For a CHO group shown within a structure,

• DO NOT ALLOW COH

For a 3D structure,

For bond in the plane of paper, a solid line is expected:	
• For bond out of plane of paper, a solid wedge is expected:	
For bond into plane of paper, ALLOW:	
ALLOW a hollow wedge for 'in bond' OR an 'out bond', provided it is different from the other in or out wedge e.g.:	

NAMES

Names including alkyl groups:

- ALLOW alkanyl, e.g. ethanyl (i.e. IGNORE 'an')
- **DO NOT ALLOW** alkol, e.g. ethol (ie 'an' is essential)

Names of esters:

- Two words are expected, e.g. ethyl ethanoate
- **ALLOW** one word, e.g. ethylethanoate

Names with multiple numbers and hyphens: Use of 'e'

- ALLOW superfluous 'e', e.g. propane-1-ol ('e' is kept if followed by consonant)
- ALLOW absence of 'e', e.g. propan-1,2-diol ('e' is omitted if followed by vowel)

Hyphens separate name from numbers:

• ALLOW absence of hyphens, e.g. propane 1,2 diol

Multiple locant numbers must be clearly separated:

- ALLOW full stops: e.g. 1.2 OR spaces: 1 2
- DO NOT ALLOW e.g. 12

Locant numbers in formula must be correct

• DO NOT ALLOW propan-3-ol

Order of substituents should be alphabetical:

• ALLOW any order (as long as unambiguous), e.g. 2-chloro-3-bromobutane

ABBREVIATIONS

van der Waal's forces ALLOW vdw forces OR VDW forces (and any combination of upper and lower cases)

C	Question		Answer	Mark	Guidance
1	(a)	(i)	(compounds or molecules having the) same molecular formula but different structural formulae ✓	1	ALLOW different structure OR different displayed formula OR different skeletal formula for structure
					DO NOT ALLOW any reference to spatial/space Same formula is not sufficient <i>(no reference to molecular)</i> Different arrangement of atoms is not sufficient <i>(no reference to structure/structural)</i>
		(ii)	2,2,3-trimethylbutane ✓	1	ALLOW trimethylbutane as the ONLY alternative response
	(b)			1	DO NOT ALLOW molecular formulae OR structural formula OR displayed formula OR mixture of the above
	(c)		C ₁₂ H ₂₅ ✓	1	IGNORE C ₂₄ H ₅₀
	(d)	(i)	$C_8H_{18} + 12\frac{1}{2}O_2 \longrightarrow 8CO^2 + 9H^2O\checkmark$	1	ALLOW multiples e.g. $2C_8H_{18} + 25O_2 \longrightarrow 16CO_2 + 18H_2O$ IGNORE state symbols

Question	Answer	Mark	Guidance
	$(n(C_8H_{18}) \text{ burned}) = 0.32 \text{ (mol) } \checkmark$	2	
(ii)			
	$(n(CO_2) \text{ from complete combustion}) = 2.56 \text{ or } 2.6 \text{ mol}$ OR $(ratio nCO_2/nC_1H_{-2}) = -7.8(125)$		DO NOT ALLOW ECF from an incorrect moles of octane
	(ratio nCO_2/nC_8H_{18}) = 7.8(125) OR (nC_8H_{18} produce 2.5 mol CO ₂) = 0.31(25) \checkmark		DO NOT ALLOW ECF from incorrect ratio from equation in (i)
			ALLOW the following alternate methods
			Method 1
			(mass CO ₂ produced) = 110 g \checkmark
			(mass CO₂ from complete combustion) = 8 × 0.32 × 44 = 112.64 or 112.6 or 113 g✓
			 Method 2
			$(n C_8 H_{18} \text{ to produce } 2.5 \text{ mol } CO_2) = 0.31(25) \checkmark$
			(mass of octane required to produce 2.50 mol CO ₂) = 35.6 OR 35.63 OR 35.625 g \checkmark

June	2015
------	------

Question	Answer	Mark	Guidance
(e) (i)	Fractional distillation AND cracking ✓	1	ALLOW either order
(ii)	Correct equation showing cracking of an alkane to form ethene ✓	1	ALLOW any correct equation with correct formulae to show cracking forming C_2H_4 of the type: alkane \longrightarrow shorter alkane(s) + alkene, e.g. $C_{10}H_{22} \longrightarrow C_8H_{18} + C_2H_4$ $_{10}H_{22} \longrightarrow C_6H_{14} + 2C_2H_4$ C ALLOW $C_2H_6 \longrightarrow C_2H_4 + H_2$ ALLOW correct molecular formulae OR structural OR displayed OR skeletal OR mixture of the above. IGNORE state symbols
	Total	9	

	Question	Answer	Mark	Guidance
2	(a)	Method 1: 100% OR (only) one product OR no waste product OR addition (reaction) ✓	2	ALLOW co-product or by-product for waste product
		Method 2: < 100% AND two products OR (also) produces NaBr OR (There is a) waste product OR substitution (reaction) ✓		For '< 100%' ALLOW not 100% OR method 2 has a low(er) atom economy (compared to method 1) IGNORE produces Br ⁻ / Na ⁺ DO NOT ALLOW incorrect waste products e.g. Br ₂ , HBr, Br, Na
				ALLOW correctly calculated value of 42 or 41.8 up to calculator value of 41.83154324 correctly rounded for second mark
				DO NOT ALLOW incorrect values for the atom economy of method 2.
				ALLOW ONLY 1 mark for a statement that both methods have 100% atom economy.
	(b)	Acid ✓	1	ALLOW H ⁺ / named mineral acid / H ₂ SO ₄ / H ₃ PO ₄ DO NOT ALLOW 'weak acid' e.g. ethanoic acid
				IGNORE pressure IGNORE temperature

Questi	on	Answer	Mark	Guidance
(c)	(i)	(Average enthalpy change) when one mole of bonds \checkmark of (gaseous covalent) bonds is broken \checkmark	2	IGNORE energy required OR energy released DO NOT ALLOW bonds formed
		or (gaseous covalent) bonds is broken v		DO NOT ALLOW bonds formed
	(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF enthalpy change = -42 (kJ mol ⁻¹) award 3 marks IF enthalpy change = +42 (kJ mol ⁻¹) award 2 marks	3	IF there is an alternative answer, check to see if there is any ECF credit possible. two common incorrect answers are: -970 (kJ mol ⁻¹) award 2 marks +970 (kJ mol ⁻¹) award 1 mark
		(Energy for bonds broken) = 5538 (kJ) \checkmark (Energy for bonds made) = 5580 (kJ) \checkmark		IGNORE signs ALLOW 1076 (bonds broken); 1118 (bonds made)
		$\Delta H_{\rm r} = -42 \; (\rm kJ \; mol^{-1}) \; \checkmark$		Correct sign required
				ALLOW ECF for bonds broken – bonds made IF at least one molar ratio is used e.g. 8 x C–H

Question	Answer	Mark	Guidance
(d)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF mass = 8.21 (g) award 3 marks	3	ALLOW ECF at each stage
	Actual $n(C_4H_9OH) \text{ produced} = \frac{3.552}{74} = 0.048 \text{ (mol)} \checkmark$		ALLOW expected mass $C_4H_9OH = 3.552 \times \frac{100}{80} = 4.44$ (g)
	theoretical $n(C_4H_9OH) = n(C_4H_9Br) = 0.048 \times \frac{100}{80} = 0.06 \text{ (mol)} \checkmark$		ALLOW Mass C ₄ H ₉ Br reacted = $0.048 \times 136.9 = 6.5712$ (g)
	Mass of C₄H ₉ Br = 0.06 × 136.9 = 8.21 (g) ✓ 3 SF required		ALLOW Mass of C ₄ H ₉ Br used = $6.5712 \times \frac{100}{80} = 8.21$ (g) DO NOT ALLOW 8.22 (<i>from use of 137 as M_r of C₄H₉Br</i>)
	Total	11	

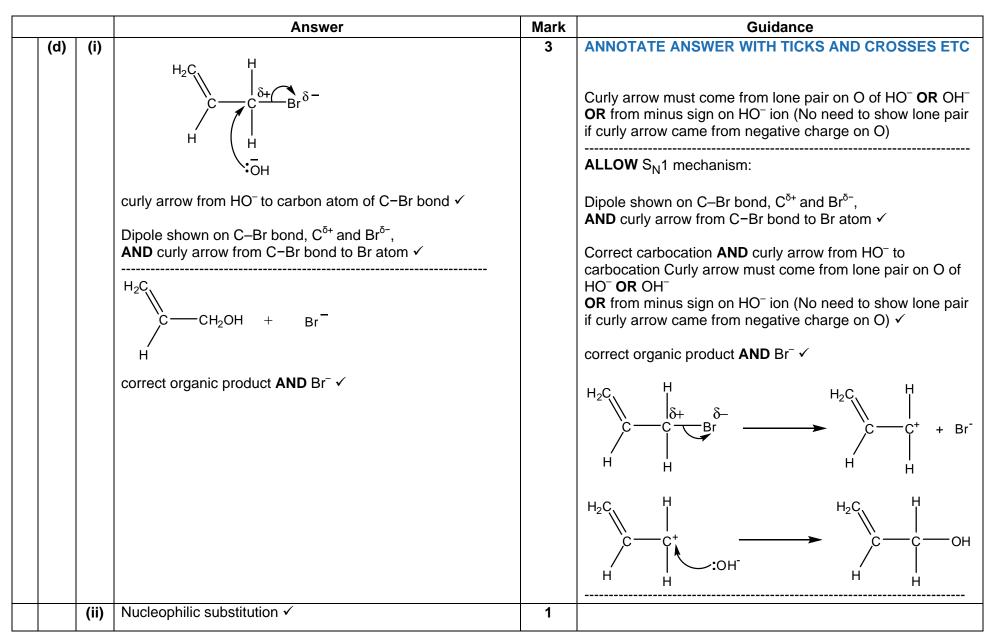
June	2015
------	------

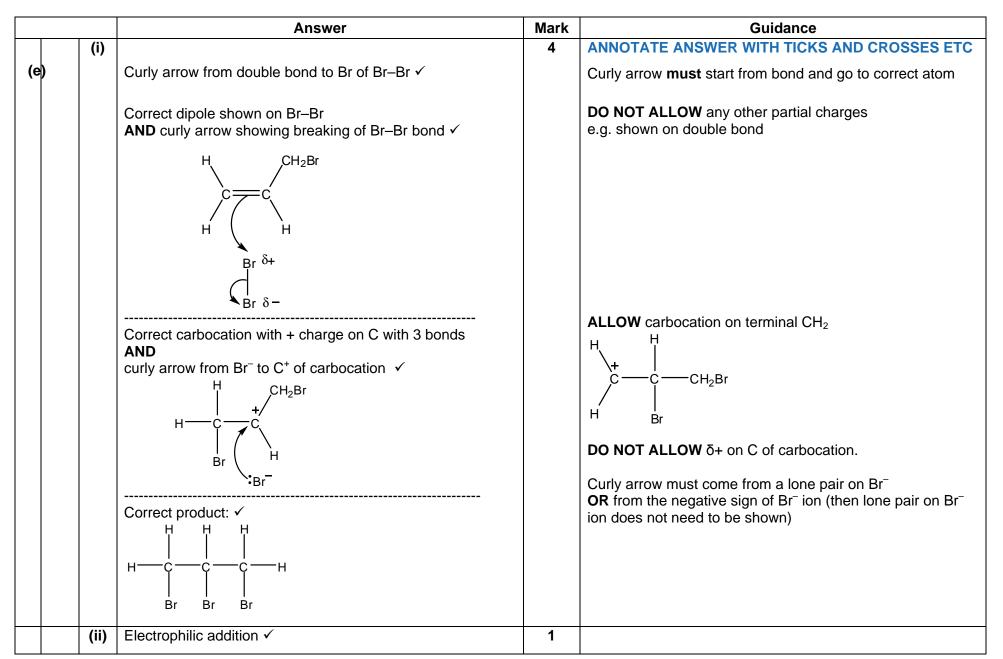
(Quest	ion	Answer	Mark	Guidance
3	(a)		Increased rate AND greater concentration of molecules / more molecules per (unit) volume ✓	2	ALLOW particles for molecules IGNORE atoms Response must imply a volume and not area ALLOW more molecules in the same space OR more molecules in the same volume OR same number of molecules in a smaller volume IGNORE molecules are closer together <i>(no idea of volume)</i>
			More collisions per second / more frequent collisions ✓		ALLOW collisions more often OR increased rate of collision IGNORE more chance of collisions 'more collisions' alone is not sufficient <i>(no rate)</i> IGNORE 'successful'
3	(b)		The (position of a dynamic) equilibrium shifts to minimise (the effect of) any change ✓	1	ALLOW suitable alternatives for 'shifts' and 'minimises' IGNORE 'reaction shifts'

Question	Answer	Mark	Guidance
(c) (i	 Pressure: Right-hand side has fewer (gaseous) moles/molecules OR left-hand side has more (gaseous) moles/molecules ✓ 	3	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC DO NOT ALLOW fewer atoms on right-hand side OR more atoms on left-hand side.
	Temperature: Statement that: (Forward) reaction is exothermic OR (forward) reaction gives out heat OR reverse reaction is endothermic OR reverse reaction takes in heat ✓		IGNORE comments about the 'exothermic side' or 'endothermic side'
	Equilibrium Lower temperature/cooling AND increasing pressure shifts (equilibrium position) to the right ✓		Equilibrium mark is for stating that BOTH low temperature and high pressure shift equilibrium to the right (Could be separate statements)
			Note: ALLOW suitable alternatives for 'to right', e.g.: towards products OR towards CH_3OH / H_2O OR in forward direction OR favours the right
			IGNORE Increases yield of CH ₃ OH/products (<i>in question</i>) IGNORE responses in terms of rate
(ii)	Low temperature gives a slow rate OR high temperatures needed to increase rate ✓	2	
	High pressure is expensive (to generate) OR high pressure provides a safety risk ✓		ALLOW high pressure is dangerous IGNORE high pressure is explosive

Question	Answer	Mark	Guidance
(d)		4	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC
	Number of Molecules		Curve must start at origin. The limit of acceptability is that the curve must start within the first small square nearest the origin.
			Curve must not touch the x-axis at higher energy
			IGNORE a slight inflexion on the curve
	Correct drawing of Boltzmann distribution curve ✓		DO NOT ALLOW two curves DO NOT ALLOW a curve that bends up at the end by more than one small square
	Axes labelled: y axis: (number of) molecules AND x axis: energy ✓		ALLOW particles instead of molecules on y axis DO NOT ALLOW enthalpy for x-axis label DO NOT ALLOW atoms instead of particles or molecules ALLOW ECF for the subsequent use of atoms (instead of molecules or particles)
	Catalyst lowers the activation energy (by providing an alternative route) \checkmark		ALLOW annotations on Boltzmann distribution diagram
	(With a catalyst a) greater proportion of molecules with energy greater than activation energy OR		ALLOW (with a catalyst) more molecules have sufficient energy to react
	(With a catalyst a) greater proportion of molecules with energy equal to the activation energy ✓		IGNORE (more) successful collisions
(e)	Allows reactions to take place at lower temperatures ✓	1	ALLOW less heat (required) IGNORE references to pressure IGNORE references to less energy (<i>in question</i>) e.g. lowers E _a
		13	

F322


(Questi	on	Answer	Mark	Guidance
4	(a)		B✓	1	ALLOW $CF_2CF_2 OR C_2F_4 OR$ tetrafluoroethene
	(b)	(i)	H ₃ C C H CH ₃	1	ALLOW correct structural OR displayed OR skeletal OR mixture of the above ALLOW E isomer H_3C C C
		(ii)	HCI ✓	1	DO NOT ALLOW Cl ₂ IGNORE names IGNORE nitrogen oxides / NO _x
	(c)	(i)	ANY TWO FROM THE FOLLOWING 🗸	1	
			Low reactivity OR will not burn/non-flammable		ALLOW inert OR stable DO NOT ALLOW inflammable
			Volatile OR low boiling point		ALLOW it is a gas IGNORE easily compressed
			non-poisonous OR non-toxic		IGNORE not harmful
					IGNORE references to solubility


F322

Question	Answer	Mark	Guidance
(ii)	Benefit of ozone layer to life (1 mark) Ozone absorbs UV (radiation) UV at Earth's surface is reduced ✓	5	 ANNOTATE ANSWER WITH TICKS AND CROSSES ETC For all equations, IGNORE dots on radicals Essential idea for first mark is that UV is removed in some way. ALLOW Prevents UV damaging life or stated type of damage, e.g. cataracts, skin cancer, mutation, crop damage
	OR <i>Maintenance of O₃ concentration</i> (1 mark) $_3 \rightleftharpoons O_2 + 0 \checkmark$ O		DO NOT ALLOW ozone absorbs IR ALLOW $_{3} \longrightarrow O_{2} + O$ $_{0}$ $_{2} + O \longrightarrow O_{3}$ ANNOT ALLOW $_{2O_{3}} \rightleftharpoons 3O_{2}$ OR $_{0}$ $_{2} + O \longrightarrow _{2O_{2}}$ for this mark
	Production of radicals from G (1 mark) $_{2}Cl_{2} \longrightarrow C l + CF_{2}Cl \checkmark$ CF		DO NOT ALLOW equations with other CFCs DO NOT ALLOW $CF_2Cl_2 \longrightarrow 2C l + CF_2$
	Breakdown of O ₃ (2 marks) $l + O_3 \longrightarrow C \ lO + O_2 \checkmark$ $OR \qquad ClO + O_3 \longrightarrow Cl + O_2$ $OR \qquad ClO + O_3 \longrightarrow Cl + 2O_2 \checkmark$		These are the only acceptable equations IGNORE overall equation (does not show role of catalyst) e.g. $O_{3+} O \longrightarrow 2O^2$

Question	Answer	Mark	Guidance
(iii)	D 🗸	1	ALLOW CHF_2Cl ALLOW B OR C_2F_4 OR CF_2CF_2
(d) (i	bond vibrates (more) OR bond bends (more) OR bond stretches (more) ✓	1	BOND essentialIGNORE molecule vibrates/rotatesAssume "It" refers to the molecule and is insufficientDO NOT ALLOW any reference to bond breakingDO NOT ALLOW a stated bond if not present in C and Fe.g. C-O, C-H not present
(ii)	$Cl_{3}C^{+} \checkmark$ $CF_{2} Cl^{+} \checkmark$	2	ALLOW 1 mark for Cl_3C AND $CF_2 Cl$ <i>i.e. no</i> + <i>charge used</i> ALLOW 1 mark for Cl_3C^- AND $CF_2 Cl^-$ <i>i.e.</i> – <i>charge used on both</i>
	Tota	l 13	

			Answer	Mark	Guidance
5	(a)		$\rightarrow \rightarrow \rightarrow \sim \sim$	2	Note: A diagram is required for each mark DO NOT ALLOW C=C in one diagram but ALLOW ECF for subsequent use in another diagram.
			p-orbital First mark diagram on left with p-orbitals labelled OR unlabelled diagram AND the statement: (sideways)		The bonds shown in the diagram are required ALLOW ECF for missing bonds in second diagram IGNORE any atoms joined to the bonds
			overlap of p orbitals \checkmark Second mark (labelled) diagram on right showing π -bond \checkmark		ALLOW a diagram where the p-orbitals are linked for second mark. e.g.
	(b)	(i)	(series of compounds with the) same functional group OR same/similar chemical properties OR same/similar chemical reactions ✓	2	IGNORE reference to physical properties IGNORE same general formula <i>(in question)</i>
			each successive/subsequent member differing by $CH_2 \checkmark$		Differs by CH ₂ is not sufficient (<i>no successive</i>)
					DO NOT ALLOW same empirical OR have the same molecular formula
		(ii)	$C_nH_{2n-1}Br \checkmark$	1	ALLOW $C_nH_{2n-1}X$ ONLY if X is specified as Br (question asks for bromide)
		(iii)	3-bromoprop(-1-)ene ✓	1	ALLOW 1-bromoprop-2-ene
	(c)	(i)	Movement of an electron pair ✓	1	ALLOW movement of a lone pair OR movement of a bond
		(ii)	Electron pair donor 🗸	1	ALLOW can donate a lone pair

		Answer	Mark	Guidance
(f)	(i)	H₂ AND Ni (catalyst) ✓	1	ALLOW name or formula for each IGNORE any stated temperature and pressure
	(ii)	(Initiation) $Cl_2 \longrightarrow _{2C} l$ AND UV \checkmark (Propagation) $C_3H_7Br + Cl \longrightarrow _{C_3}H_6Br + HCl \checkmark$ $C_3H_6Br + Cl_2 \longrightarrow _{C_3}H_6BrCl_+ Cl \checkmark$ (Termination) Two from the three termination equations below \checkmark $2Cl \longrightarrow Cl_2$ $C_3H_6Br + Cl \longrightarrow _{C_3}H_6BrCl$ $2C_3H_6Br \longrightarrow _{C_6}H_{12}Br_2$ names of steps initiation, propagation and termination linked to one correct equation for each step in this mechanism \checkmark	5	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC DO NOT ALLOW any ECF in this question IGNORE references to temperature THROUGHOUT, ALLOW correct molecular formulae OR structural OR displayed OR skeletal OR mixture of the above IGNORE dots IGNORE state symbols IGNORE one incorrect termination equation
	(iii)	further substitution OR produces different termination products OR More than one termination step√ substitution at different positions along chain √	2	 IGNORE mixture of organic products (<i>in question</i>) ALLOW dichloro/multichloro/dibromo/multibromo compounds formed OR an example of a further substitution product OR an example of a different termination product ALLOW more than one hydrogen (atom) can be replaced ALLOW radicals react with each other to form other products ALLOW forms different structural isomers ALLOW a hydrogen (atom) on a different carbon (atom) can be replaced
		Total	25	

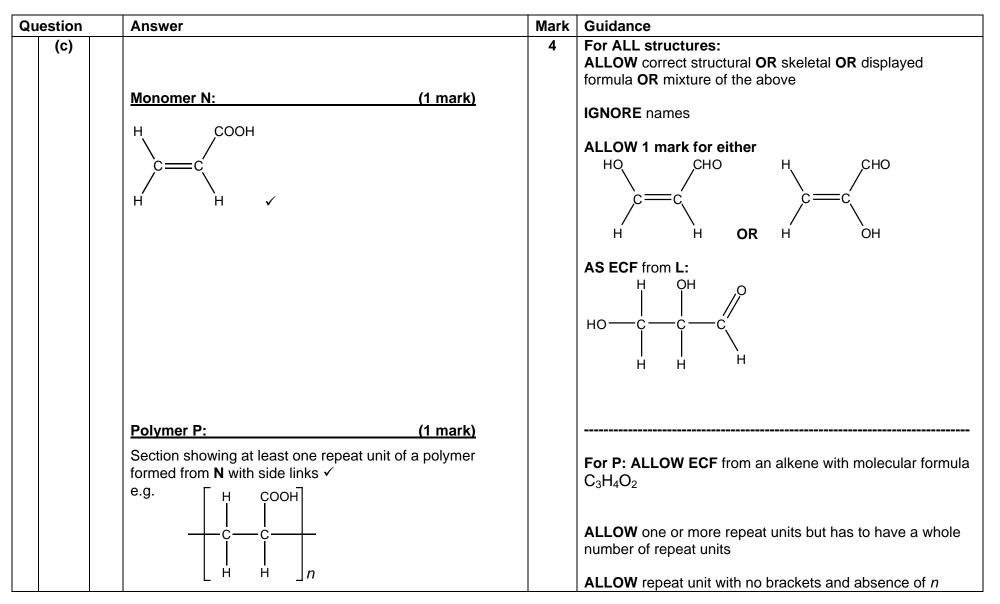
Q	uestic	on	Answer	Mark	Guidance
6	(a)	(i)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF $\Delta H_c = -2260 \text{ (kJ mol}^{-1} \text{) award 4 marks}$ IF $\Delta H_c = (+)2260 \text{ (kJ mol}^{-1} \text{) award 3 marks (incorrect sign)}$ IF $\Delta H_c = (\pm)2257(.2) \text{ (kJ mol}^{-1} \text{) award 3 marks (not 3 sf)}$	4	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC
			Moles Amount, <i>n</i> , C ₅ H ₁₂ O calculated correctly = 0.0175 (mol) \checkmark		
			Energy q calculated correctly = 39501 (J) OR 39.5(01) (kJ) \checkmark		Note: $q = 180 \times 4.18 \times 52.5$ ALLOW 39501 OR correctly rounded to 3 sig. fig. (J) IGNORE sign IGNORE working
			Calculating ΔH correctly calculates ΔH in kJ mol ⁻¹ to 3 or more sig figs \checkmark		Note: from 39501 J and 0.0175 mol $\Delta H = (-)2257.2 \text{ kJ mol}^{-1}$ IGNORE sign at this intermediate stage ALLOW ECF from incorrect q and/or incorrect n
			Rounding and Sign calculated value of ΔH rounded to 3 sig. fig. with minus sign \checkmark		Final answer must have correct sign and three sig figs
		(ii)	ANY TWO FROM THE FOLLOWING VV	2	IGNORE heat loss (in question)
			incomplete combustion		ALLOW burns incompletely IGNORE incomplete reaction
			non-standard conditions evaporation of alcohol/water		
			specific heat capacity of beaker/apparatus		

Question	Answer	Mark	Guidance
(b) (i)	5C(s) + $6H_2(g)$ + $\frac{1}{2}O_2(g) \longrightarrow C_5H_{12}O(I) \checkmark$	1	Balancing numbers AND species AND states all required DO NOT ALLOW multiples of this equation
(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF enthalpy change = -3320 (kJ mol ⁻¹) award 3 marks IF enthalpy change = (+)3320 (kJ mol ⁻¹) award 2 marks Working for CO ₂ AND H ₂ O seen anywhere $5 \times (-)394$ AND $6 \times (-)286$ OR (-)1970 AND $OR (-)3686 \checkmark (-)1716$ Calculates ΔH_c A further 2 marks for correct answer AND correct sign $= 5 \times -394 + 6 \times -286366$ $= -3320$ (kJ mol ⁻¹) \checkmark A further 1 mark for correct answer AND incorrect or no sign $= (+)3320$ (kJ mol ⁻¹) \checkmark Cycle wrong way around: $-366 - (5 \times -394 + 6 \times -286)$	3	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC IF there is an alternative answer, check to see if there is any ECF credit possible Common incorrect answers are shown below Award 2 marks for -1744 OR -1890 OR -314 OR -4052 Award 1 mark for 1744 OR 1890 OR 314 OR 4052

Question	Answer	Mark	Guidance
		6	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC
(c)	QWC: Evidence of the IR absorption at 1720 (cm ⁻¹) for presence of C=O/carbonyl group ✓		 LOOK ON THE SPECTRUM for labelled peaks which can be given credit BOTH IR at ~1720 (cm⁻¹) AND C=O required ALLOW ranges from <i>Data Sheet</i>, i.e. C=O within range 1640–1750 cm⁻¹;
	 QWC: No carboxylic acid OH absorption in IR OR no peak between 2500–3300 cm⁻¹ AND so J is a secondary alcohol OR so K is a ketone ✓ 		IGNORE any reference to C-O absorption For structures of J and K, ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above IGNORE any names given for J and K
	Alcohol J OH H H_3C C C CH_3 H CH_3 $\checkmark \checkmark$		ALLOW 1 mark for the structure of an alcohol with the molecular formula $C_5H_{12}O$ DO NOT ALLOW pentan-1-ol (<i>primary and unbranched</i>) or 2-methylbutan-2-ol (<i>branched but tertiary</i>) DO NOT ALLOW any marks for J and K if more than one
			structure is given for J
	Compound K Structure of a carbonyl compound that could be obtained from alcohol J \checkmark		Note: 'sticks' in either J and/or K will lose only 1 mark ALLOW 1 mark for: $H_{3}C$ C C C C C C C C C
	Equation		equation, even if not labelled.
	Equation Balanced equation for conversion of J to K \checkmark e.g. CH ₃ CHOHCH(CH ₃) ₂ + [O] \longrightarrow CH ₃ COCH(CH ₃) ₂ + H ₂ O		ALLOW molecular formulae in equation i.e. $C_5H_{12}O + [O] \longrightarrow C_5H_{10}O + H_2O$ DO NOT ALLOW equations that form a carboxylic acid

Question	Answer	Mark	Guidance
(d)	Labelled diagram showing at least one H-bond between alcohol molecule and water ✓	1	IF diagram is not labelled ALLOW Hydrogen bonds / H bonds from text
	e.g. Hydrogen bond		Diagram should include role of an O lone pair and dipole charges on each end of H bond.
	δ-		IGNORE alcohol R group, even if wrong
	$H_{3}C \longrightarrow C \longrightarrow C \longrightarrow O \stackrel{\bullet}{\longrightarrow} H_{3}C \longrightarrow H_{3} \stackrel{\bullet}{\longrightarrow} H_{3} $		ALLOW structural OR displayed OR skeletal formula OR mixture of the above
	Total	17	

Qu	estion	Answer	Mark	Guidance
7	(a)	Mole ratio C : H : O is 3.33 : 6.67 : 3.33 ✓	3	ALLOW $\frac{40.00}{$
		Empirical formula is CH₂O ✓		12.0 1.0 16.0
		Molecular formula is C ₃ H ₆ O ₃ AND use of 90 OR 3 × 30 ✓		ALLOW mass of C = 0.400 x 90 or 36 AND mass of H = 0.06677 x 90 or 6 AND mass of O = 0.5333 x 90 or 48


PMT

Mark Scheme

F322

Question	Answer	Mark	Guidance
(b)	Evidence of carboxylic acid (1 mark) IR: 1550–1800 cm ⁻¹ AND C=O/carbonyl AND 2300–3700 cm ⁻¹ AND 0–H in carboxylic acid \checkmark (1 mark) Evidence of alcohol (1 mark) (broad) 3200–3700 cm ⁻¹ linked to 0–H in alcohol OR (is a primary) alcohol as oxidised (to a COOH) OR (is a primary) alcohol as oxidised (to a COOH) OR is an alcohol as it forms a carboxylic acid OR is an alcohol as water is eliminated. \checkmark Identifications L: H H HO H \checkmark M: H H H H \checkmark	5	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC LOOK ON THE SPECTRUM for labelled peaks which can be given credit ALLOW ranges from <i>Data Sheet</i> : C=O within range 1640–1750 cm ⁻¹ ; (broad) O–H within range 2500–3300 cm ⁻¹ (broad) O–H within range 3200–3550 cm ⁻¹ For ALL structures: ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above IGNORE names
	Equation (1 mark) $C_3H_6O_3 + 2[O] \longrightarrow C_3H_4O_4 + H_2O \checkmark$		Equation: $C_3H_6O_3 + 4[O] \longrightarrow C_3H_2O_5 + 2H_2O \checkmark$ ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above in equation

Mark Scheme

Question	Answer	Mark	Guidance
	Repeat units (1 mark) $n = 10000/72 = 139 \checkmark$		MUST be a whole number. ALLOW 138 OR140
	Equation (1 mark)		
	Balanced equation for formation of P from N✓ e.g.		For equation, ALLOW molecular OR structural OR skeletal OR displayed formulae OR mixture of the above e.g. ALLOW $nC_3H_4O_2 \longrightarrow (C_3H_4O_2)_n$
	$n \xrightarrow{COOH} \qquad \qquad$		<i>n</i> on LHS can be at any height to the left of formula AND <i>n</i> on the RHS must be a subscript (essentially below the side link if displayed/skeletal formula is used)
	н н ́н́ н́ _ л		ALLOW use of calculated value for <i>n</i> in equation e.g. $139C_3H_4O_2 \longrightarrow (C_3H_4O_2)_{139}$
	Total	12	

PMT

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553 PART OF THE CAMBRIDGE ASSESSMENT GROUP

© OCR 2015